Depicting more accurate pictures of protistan community complexity using pyrosequencing of hypervariable SSU rRNA gene regions.
نویسندگان
چکیده
Initial environmental pyrosequencing studies suggested highly complex protistan communities with phylotype richness decisively higher than previously estimated. However, recent studies on individual bacteria or artificial bacterial communities evidenced that pyrosequencing errors may skew our view of the true complexity of microbial communities. We pyrosequenced two diversity markers (hypervariable regions V4 and V9 of the small-subunit rDNA) of an intertidal protistan model community, using the Roche GS-FLX and the most recent GS-FLX Titanium sequencing systems. After pyrosequencing 24 reference sequences we obtained up to 2039 unique tags (from 3879 V4 GS-FLX Titanium reads), 77% of which were singletons. Even binning sequences that share 97% similarity still emulated a pseudodiversity exceeding the true complexity of the model community up to three times (V9 GS-FLX). Pyrosequencing error rates were higher for V4 fragments compared with the V9 domain and for the GS-FLX Titanium compared with the GS-FLX system. Furthermore, this experiment revealed that error rates are taxon-specific. As an outcome of this study we suggest a fast and efficient strategy to discriminate pyrosequencing signals from noise in order to more realistically depict the structure of protistan communities using simple tools that are implemented in standard tag data-processing pipelines.
منابع مشابه
A Method for Studying Protistan Diversity Using Massively Parallel Sequencing of V9 Hypervariable Regions of Small-Subunit Ribosomal RNA Genes
BACKGROUND Massively parallel pyrosequencing of amplicons from the V6 hypervariable regions of small-subunit (SSU) ribosomal RNA (rRNA) genes is commonly used to assess diversity and richness in bacterial and archaeal populations. Recent advances in pyrosequencing technology provide read lengths of up to 240 nucleotides. Amplicon pyrosequencing can now be applied to longer variable regions of t...
متن کاملExploring Microbial Diversity and Taxonomy Using SSU rRNA Hypervariable Tag Sequencing
Massively parallel pyrosequencing of hypervariable regions from small subunit ribosomal RNA (SSU rRNA) genes can sample a microbial community two or three orders of magnitude more deeply per dollar and per hour than capillary sequencing of full-length SSU rRNA. As with full-length rRNA surveys, each sequence read is a tag surrogate for a single microbe. However, rather than assigning taxonomy b...
متن کاملGut Reaction: Pyrosequencing Provides the Poop on Distal Gut Bacteria
The human distal gut hosts a bustling community comprising thousands of different kinds of bacteria. Fortunately, most of these intestinal residents don’t cause disease but instead play key roles in nutrition, metabolism, pathogen resistance, and immune response regulation. Unfortunately, these beneficial bacteria are just as susceptible to the antibiotics we take to treat pathogenic bacteria. ...
متن کاملEstimating Protistan Diversity Using High-Throughput Sequencing.
Sequencing hypervariable regions from the 18S rRNA gene is commonly employed to characterize protistan biodiversity, yet there are concerns that short reads do not provide the same taxonomic resolution as full-length sequences. A total of 7,432 full-length sequences were used to perform an in silico analysis of how sequences of various lengths and target regions impact downstream ecological int...
متن کاملGroundtruthing Next-Gen Sequencing for Microbial Ecology–Biases and Errors in Community Structure Estimates from PCR Amplicon Pyrosequencing
Analysis of microbial communities by high-throughput pyrosequencing of SSU rRNA gene PCR amplicons has transformed microbial ecology research and led to the observation that many communities contain a diverse assortment of rare taxa-a phenomenon termed the Rare Biosphere. Multiple studies have investigated the effect of pyrosequencing read quality on operational taxonomic unit (OTU) richness fo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Environmental microbiology
دوره 13 2 شماره
صفحات -
تاریخ انتشار 2011